

Grande Fleur

Grande Fleur cycling a 5-litres glass vacuum insulated reactor

Requirement

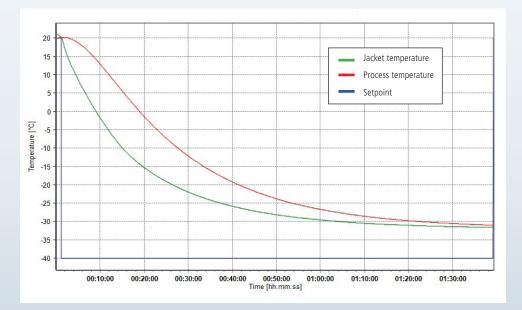
This Case Study demonstrates the minimum achievable process temperature and the process temperature control abilities of the Grande Fleur when it is connected to an Asahi 5-litre vacuum insulated reactor.

Method

The 5-litres Asahi glass vacuum insulated reactor was connected to Grande Fleur using 1-meter M24 metal insulated hoses. The thermofluid used in the system was "DW-Therm". Process control was carried out via a Pt100 sensor located in the process mass. Stirrer speed was set to 100 rpm.

Setup details

Temperature range:-40°C...+200°CCooling power:0.6 kW @ +20°

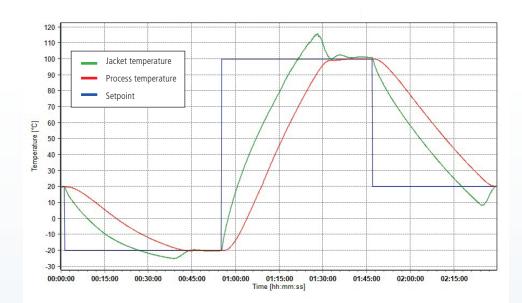

Heating power: Hoses: HTF: Reactor:

Reactor content: Stirrer speed: Control: Amb. temperature: 0.6 kW @ +20°C 0.6 kW @ 0°C 0.35 kW @ -20°C 1.5 kW 2*1 m metal insulated M60.115/200.05 Asahi 5-litres glass vacuum insulated 4 l M60.115/200.10 100 rpm process +25°C

Results

1. Lowest achievable temperature (Tmin):

As the graphic shows, a minimum temperature of -31°C was reached after 18 minutes.



2. Performance:

The table and graphic data show the speed, accuracy and stability of the Grande Fleur as each new set point is reached and maintained.

Start T	End T	Approximate time	Av. Ramp Rate	Fastest Ramp Rate
+20°C	-20°C	42 minutes	0.95 K/min	(+10°C to 0°C) 1.4 K/min
-20°C	+100°C	43 minutes	2.8 K/min	(+30°C to +60°C) 3.8 K/min
+100°C	+20°C	41 minutes	1.9 K/min	(+60°C to +30°C) 2 K/min

